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Introduction
A neural network is a collection of algorithms that work together in a manner
similar to the human brain to recognize trends. Much like the human brain they
are capable of recognizing patterns that help to categorically identify objects;
however, they can also identify more complex mathematical and physical
trends among large samples of data. This research seeks to make use of these
capabilities to develop models that predict material response of materials. The
property of interest is the effective permeability of carbon composites used in
thermal protection systems. Currently, a verified means of generating the
extensive database of effective permeability measurements that will train the
neural network has been established and a discussion of such composes the
majority of this presentation.

Effective permeability is an important property for carbon composites as it
impacts the mitigation of heat transfer during the entry process of space
capsules. Carbon composites used as TPS materials are low-density materials
that consist of a network of carbon fibers infused with a resin (also referred to
as the matrix). The composites used on space capsules are highly porous with
the fiber and resin occupying no more than 20% of the total volume. The high
porosity allows gases to flow through the material. For example, the resin
decomposes (process called pyrolysis) and travels through the charred
(completely pyrolyzed) network of fibers. Similarly, boundary layer gases can
penetrate the material causing in-depth gas-phase and gas-surface reactions [1].

Methodology
All microstructures were generated with the use of Fibergen, and permeability
calculations were performed using the DSMC method. Fibergen uses
dimensions of the domain to be simulated, target bulk porosity, nominal fiber
orientation, nominal fiber radius, and specified variances to generate
cylindrical fibers. To replicate the FiberForm microstructure, the radius of a
cylindrical fiber is sampled from a Gaussian distribution with a mean of 5 µm
and standard deviation of 0.1 µm [3]. The DSMC technique is a stochastic
approach that simulates the Boltzmann equation. A detailed description of the
DSMC technique and models can be found in Refs. [4]. The DSMC
simulations are performed using the open-source DSMC solver Stochastic
Parallel Rarefied gas Time-accurate Analyzer (SPARTA) [5, 6, 7], which uses a
multi-level Cartesian mesh to track and collide particles.

Results
It was observed that the microstructures of FiberForm generated using
Fibergen reproduced the effective permeability from two independent
experimental measurements [1, 2] with errors within 10 % at low temperatures
and high pressures. A systematic increase in the error was observed at high
temperatures and low pressures for some samples, which could arise from the
limitation of the Klinkenberg formulation that was used to interpret the
experimental and simulation results. The initial validation with FiberForm was
extended to the full composite through a novel infusion approach for the digital
microstructures. Comparison of the effective permeability with the
experimental data indicated good agreement. A new relation for the effective
permeability was obtained through additional DSMC simulations, and it was
demonstrated that the relation could be used for gaseous species that were not
explicitly simulated to derive the relation. Avenues for new targeted
experiments have been identified and additional validation will be performed
in the future.

Current/Future Work
The next step in this research is currently underway and involves the
development of a robust neural network to autonomously predict effective
permeability with high fidelity, efficiency, and accuracy. The objective is to
construct a neural network capable of modeling effective permeability for any
combination of microstructure and flow properties. It has already been shown
that support vector regression (SVR) can replicate permeability calculations of
Fiberform with relative accuracy. Figure 2 shows the results of a comparison of
the permeability force calculated from the SVR model to that calculated from
the experimental results of Panerai et al. [1].
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Figure 3. Comparison of DSMC simulations with experimental data of 
the full composite. 

Current material response codes formulate the momentum transport from these
penetrating gases through the use of volume-averaged models. Such
approaches require model closure: effective permeability of the composite. The
goal of this research was to demonstrate the ability of the SPARTA direct
simulation Monte Carlo (DSMC) solver to accurately and efficiently model the
effective permeability of porous media. The synthetic microstructures used for
these purposes were generated using Fibergen, which was shown to reproduce
the effective permeability measurements for the Fiberform heatshield material
of Marschall and Milos [2]. Results were also compared against the
experimental dataset of Panerai et al. [1]

Figure 4. Comparison of SVR and experimental fit of Panerai et al.

With a means to build a permeability database now established and preliminary
machine learning results obtained, the next step is to implement ResNet for the
sake of summarizing the microstructure voxel image as a more tractable set of
values to feed into a convolution neural network along with the other features:
temperature and pressure. In this scenario, the microstructure image would be
substituted for the porosity/sample density of the material, which has proven to
be lacking as a robust representation of the material.

Figure 2. A sample microstructural image generated synthetically using 
Fibergen


