A Virtual Testbed Infrastructure for Cryo-robotic Subsurface Exploration

M. S. Boxberg^{1,2}, L. Boledi¹, Q. Chen¹, A.-C. Plesa³, A. Simson¹, and <u>J. Kowalski^{1,2}</u> ¹ AICES, RWTH Aachen University, Germany, ² Computational Geoscience, Georg-August University of Göttingen, Germany, ³ DLR, Institute of Planetary Research, Berlin, Germany (kowalski@aices.rwth-aachen.de)

Objective

- Develop a digital infrastructure to foster crossdisciplinary development of cryo-exploration technology
- Facilitate the systematic and reproducible virtual testing of candidate cryo-robot designs in different cryoenvironments complementary to lab and field tests
- Provide a Python interface to **integrate and process** mission data, and to conduct optimal data acquisition and UQ

Building blocks of the virtual testbed [2]

The cryo-robot's engineering design + payload module determine its dynamic behavior (physics-engine) and can be optimized accordingly (two-way coupling). The

cryo-robot's performance depends on the cryoenvironment. The payload module comprises sensors that inform about the cryoenvironment.

Physics-engine: Modelling the cryorobot's dynamic

Cryo-environment: Characterization of the ambient environmental conditions

Engineering design: specification of the cryobot's structure & geometry

Payload module: specification of the cryobot's sensors & science playload

The 18th International Planetary Probe Workshop, June - August 2021

Physics-engine

Cryo-robot dynamics is a multi-physics process:

- A contact melting
- **B** nucleate boiling
- **C** lateral melting **D** heat conduction

E melt water convection Design optimization requires high-fidelity models, i.e. considering A – E; mission relevant metrics, such as transit time and power consumption can be approximated based on idealized efficiency & trajectory models A+D(+B) [1,3].

Cryo-environment [2]

- Ice Data Hub provided as Python module
- *.yaml files contain property data on vertical ice profiles
- Brokerage-type functional layer provides access, e.g. to temperature sensitive material parameters

Cryo-robot design [2,3]

- *.yaml files contain data on engineering design as relevant for the physics-engine
- Extendible Python / Jupyter workflow hosted on git

[1] Schüller K., Kowalski J. (2019. Icarus, 317, 1–9.

[2] Boxberg M. S. et al. (2020) EGU. Abstract # EGU21-13052

[3] Boxberg M. S. et al., 2021, submitted

[4] Plesa A.-C. et al. EPSC. Vol.14, Abstract # EPSC2020-1038, 2020

[5] Heinen D. et al., 2021, submitted

GÖTTINGEN

Results:

Europa	+		Europ This model thickness	a Model	40km	a, drho	=11kg/	m ³
Datasets:	E		This model thickness	is based on si 10km, density c	nulations	by Ina Pless.	7.00	the second second
(T) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	Leafet	usos a ejore Jorsa	541		ontrast 11)	kg/m³ within	the ice.	i l
Europa Model: 40km, drho=11kg/m ⁴	ter column ne 🕻 Ad	d a column)	Add a row		Save fit	.)(Save file as	(*.yami)
-	<pre>property filter data</pre>	type	value	de det	ani	s∥8 gnit	var 1/	variab
	density_co	scalar	11.0	None	kg m^-3	['1 -3 0 0-	None	Non
	density_ics	tabulated	(1520799.8-	None	kg n^-3	['1 -3 0 0-	radius ['0	100
*	density_wa	scalar	1000.0	None	kg n~-3	1'1 -3 0 0-	None	Non
×	dynamic_vi-	scalar -	0.0013	None	kg/m/s	['1 -1 -1 -	None	Non
	ice_thickn-	scalar	£0000.0	None	п	['0 1 0 0 -	None	Non
	latent hea	scalar -	333700.0	None	d/kg	102-20-	Bone	Non

The project is supported as part of the DLR Explorer Initiative by the Federal Ministry of Economics and Technology, Germany, based on the decision by the German Bundestag (FKZ: 50NA1908, 50NA2009)

GEORG-AUGUST-UNIVERSITÄT

EnEx-RANGE-APU:	32 d
(2,88 kW,; 0,08 m radius)
TRIPLE-IceCraft:	29 d
(20 kW,; 0,20 m radius)	
RECAS:	54 d
(5 kW,; 0,15 m radius)	
Valkyrie:	140 d
(5 kW; 0,25 m radius)	

- Mission analysis based on a measured temperature profile at Dome C Antarctica [3]:
- Comparative study of different existing cryo-robot designs

Mission analysis based on a simulated Europa cryo-environment following [4]: ice shell thickness 40km / salt content 23 kg/m⁻³ for the TRIPLE IceCraft [5] Detailed results incl. sensitivity analysis and UQ in [3]: Reach out, if interested!

