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Fig. 1. Geysers on Enceladus. Credit: NASA/JPL Enceladus is a prime scientific 2033 Launch Opportunity C; = 16.3 km?/s
target due to active geological 1. Venus Gravity Assist - 2033

features and evidence of liquid Earth Gravity Assist — 2035
water. The plumes (Fig. 1) from Deep Space Maneuver — 2037 AV =59 m/s
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its rifts were sampled by the 4. Earth Gravity Assist —2037
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Cassini mission, which detected Deep Space Maneuver — 2038 AV =218 m/s

carbon, hydrogen, oxygen, and . Titan Arrival — 2043 K
nitrogen— key signatures of Aerogravity assist is a novel aerodynamic 2 usires

potential life [1]. Mission design = maneuver where the atmosphere and gravity of a
SATURN

S8 Using traditional fully-propulsive planetary body provides the AV necessary to /

orbit insertion maneuvers is expensive and time consuming. A prior study has ruled transition from a hyperbolic trajectory to a

traditional chemical and solar electric propulsion-based missions infeasible [1]. An  captured orbit. From the Saturnian viewpoint of a  Fig. 2. Interplanetary mission design.
enabling alternative is Titan aerogravity assist [1-4]. Titan aerogravity assist, the spacecraft approaches the system on a hyperbolic orbit,

but after interaction with the Titanian atmosphere, the vehicle is in a Saturn captured
orbit. Ensuing “pumpdown” maneuvers, consisting of small AV burns and gravity

assists of various moons, bring the vehicle into the desired Enceladus flyby orbit [1,2].
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Fig. 3 shows the maneuver
with Titan as the central
body. The spacecraft enters
and leaves Titan’s sphere of
influence (SOI) on a
hyperbolic trajectory. An
active guidance scheme
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Fig. 4a. 45-deg. sphere-  Fig. 4b. 60-deg. sphere-cone — Fig. 4c. 70-deg. sphere—cone =
cone — Galileo. Credit: NASA Huygens. Credit: ESA Mars Science Lab. Credit: NASA
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Blunt bodies (Fig. 4) were considered for Titan aerogravity assist. To stress the
guidance and control mechanisms, 70-deg. sphere-cone was used, as it produces lower
L/D than the 45 and 60 deg. sphere-cone shapes at equivalent angles of attack.

Sphere of Influence (SOI) Veh_lde .tO the desired
Exit (V. = 1.64 km/s) orbital orientation.
Fig. 3. Aerogravity assist from a Titan perspective [5]

R Table 1. Potential List of Target Orbits for the 2043 Arrival Scenarios [3]

-7 EX|t
) ~_Condition
Goal

Arrival Date km/s km/s 5, deg. km/s

~eb. 11, 2043 (Direct) 11.7 14.3

~eb. 13, 2043 (Direct) 7.3 1.197 47.16 5.47

~eb. 23, 2043 (Direct) 14.8 2.6 18.5 3.8
Fig. 5. Notional example of a numerical predictor corrector (NPC) guidance that propagates :eo 11, 2043 (Moon Tour) 11 3 1.64 23 0.18
trajectories on-board to select the guidance commands that best achieves the exit goals. 0. 13, 2043 (Moon Tour) 1. 252 45 . 633 0. 618

Two famllles of target orbit after the aerogravity assist maneuver (see Table 1): Direct
where the spacecraft goes directly to Enceladus’s vicinity and does an orbital capture
burn; Moon Tour trajectories where the spacecraft is in a Saturn orbit visits other

moons and does flybys of Enceladus. For guidance and control performance, the Feb.
23rd Moon Tour scenario was the most stringent due to the large AV and turn angle
(0) needed from the aeroassist maneuver. That is the scenario studied here.

Fig. 6a. Direct force control (DFC) independently Fig. 6b. Example of a direct force control
controls angle of attack (o) and sideslip (B). mechanism — trim tab. Credit: NASA. 1200 20 1 e Max a- +24°
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