\qquad
Soumyo Dutta ${ }^{1}$, Benjamin M. Tackett ${ }^{2}$, Richard W. Powell ${ }^{2}$, Rohan G. Deshmukh ${ }^{2}$, Rafael A. Lugo ${ }^{1}$, Daniel L. Engel ${ }^{3}$ ${ }^{1}$ NASA Langley Research Center, Hampton, VA; ${ }^{2}$ Analytical Mechanics Associates, Inc., Hampton, VA; ${ }^{3}$ University of Illinois Urbana-Champaign

Introduction

Enceladus is a prime scientific target due to active geological features and evidence of liquid water. The plumes (Fig. 1) from its rifts were sampled by the Cassini mission, which detected carbon, hydrogen, oxygen, and nitrogen- key signatures of potential life [1]. Mission design using traditional fully-propulsive orbit insertion maneuvers is expensive and time consuming. A prior study has ruled traditional chemical and solar electric propulsion-based missions infeasible [1]. An enabling alternative is Titan aerogravity assist [1-4].
 Blunt bodies (Fig. 4) were considered for Titan aerogravity assist. To stress the guidance and control mechanisms, 70-deg. sphere-cone was used, as it produces lower L/D than the 45 and 60 deg. sphere-cone shapes at equivalent angles of attack.

Guidance and Control Strategy

Fig. 5. Notional example of a numerical predictor corrector (NPC) guidance that propagates trajectories on-board to select the guidance commands that best achieves the exit goals.

Fig. 6a. Direct force control (DFC) independently controls angle of attack (α) and sideslip (β).

Performance Statistics

 Fig. 8. Percent of cases with successful aerogravity assist.

8000-case Monte Carlo - Huygens covariancebased delivery states [9] - Aero dispersion (MSL aerodatabase) - Atmosphere disper--sion (TitanGRAM)

Metrics

1. Percent success (within 20\% of target energy) 2. Total $\Delta \mathrm{V}$ at SOI

Reference case shows good success rate in achieving the target orbit while needing reasonable amount of $\Delta \mathrm{V}$ at SOI. Good delivery flight path uncertainty from interplanetary navigation is important for the mission success.

Mission Design

2033 Launch Opportunity $C_{3}=16.3 \mathrm{~km}^{2} / \mathrm{s}^{2}$

1. Venus Gravity Assist - 2033
2. Earth Gravity Assist - 2035
3. Deep Space Maneuver - $2037 \Delta \mathrm{~V}=59 \mathrm{~m} / \mathrm{s}$
4. Earth Gravity Assist - 2037
5. Deep Space Maneuver $-2038 \Delta \mathrm{~V}=218 \mathrm{~m} / \mathrm{s}$ 6. Titan Arrival - 2043

Aerogravity assist is a novel aerodynamic maneuver where the atmosphere and gravity of a planetary body provides the ΔV necessary to transition from a hyperbolic trajectory to a captured orbit. From the Saturnian viewpoint of a Fig. 2. Interplanetary mission design. Titan aerogravity assist, the spacecraft approaches the system on a hyperbolic orbit, but after interaction with the Titanian atmosphere, the vehicle is in a Saturn captured orbit. Ensuing "pumpdown" maneuvers, consisting of small $\Delta \mathrm{V}$ burns and gravity assists of various moons, bring the vehicle into the desired Enceladus flyby orbit [1,2]. Hyperbolic Entry Trajectory

- Sphere of Influence (SOI)

Exit ($V_{\infty}=1.64 \mathrm{~km} / \mathrm{s}$)
Fig. 3. Aerogravity assist from a Titan perspective [5]
Table 1. Potential List of Target Orbits for the 2043 Arrival Scenarios [3]

Arrival Date	\mathbf{V}_{∞} in, km / s	\mathbf{V}_{∞} out, km / s	Turn Angle, δ, deg.	ΔV to Enceladus, km / s
Feb. 11, 2043 (Direct)	11.7	3.3	14.3	3.9
Feb. 13, 2043 (Direct)	7.3	1.197	47.16	5.47
Feb. 23, 2043 (Direct)	14.8	2.6	18.5	3.8
Feb. 11, 2043 (Moon Tour)	11.3	1.64	23	0.18
Feb. 13, 2043 (Moon Tour)	7.3	1.252	45.633	0.618
Feb. 23, 2043 (Moon Tour)	14.81	1.64	33.96	0.17

Two families of target orbit after the aerogravity assist maneuver (see Table 1): Direct where the spacecraft goes directly to Enceladus's vicinity and does an orbital capture burn; Moon Tour trajectories where the spacecraft is in a Saturn orbit visits other moons and does flybys of Enceladus. For guidance and control performance, the Feb. 23 rd Moon Tour scenario was the most stringent due to the large ΔV and turn angle (δ) needed from the aeroassist maneuver. That is the scenario studied here.

Reference Case

Fig. 7. Reference trajectory states.

References and Acknowledgements

Enceladus," "EEEAC paper \#1644, Version 5 , updated January 9 , 2009.
[2] Lu, Y. and Saiki, s.J., "Titan Aerogravity-assist Maneuvers for Saturn/Enceladus Missions,", Acta Astronautica, Vol. 176, November 2020, pp 262-275.
 the Planetary Science Decadal Survey, 2023-2032, Sept. 2020.
[4] Tackett, B., et al. "Guidance and Control Approaches that Enable Titan Aerogravity Assist Enceladus Missions," White Paper for the Planetary Science Decadal Survey, 2023-
2032, Sept. 2020.
,
Mechanics Meeting, AAS 21-201, February 2021
[6] Dutta, S. et al, "Aerocapature as an Enhancing Option for Ice Giants Missions," White Paper for the Planetary Science Decadal Survey, 2023-2032, July 2020 .

 [99 Striepe, S.A.," "Huygens Probe Entry, Descent, and Landing Trajectory Reconstruction Using the Program to Optimize Simulated Trajectories II," University of Texas, Austin,
Ph.D. Dissertation, 2007.

The authors would like to thank several colleagues in defining the aeroassist scenarios including Jim Arnold (Ames/AMA), Gary Allen (Ames/AMA), and Min Qu (LaRC/AMA).

